
PRINT: Python bootcamp 2020PRINT: Python bootcamp 2020
Statements: loops and conditionalsStatements: loops and conditionals
Johanna Hartke (jhartke@eso.org)

Nonglish.com

Resources: "Think Python: How to think like a computer scientist" by Allen Downey

First and foremost:First and foremost:
Indentation is key!
Makes code more readable
In python: marks code blocks
Good text editors take care of this
Please, please, please do not mix spaces and tabs

The modulus operator The modulus operator %
Works on integers
Yields the remainder of division

Example

In [6]: quotient = 5//3 # true division
remainder = 5%3
print('Quotient: ', quotient)
print('Remainder: ', remainder)

Quotient: 1
Remainder: 2

Boolean expressionsBoolean expressions
Expressions that are either True or False
True and False are not strings, they have type bool
None is evaluated as False
Nonzero numbers are evaluated as True

Examples:

In [7]: 10 == 10

In [9]: 10 == 20

In [11]: type(False)

Out[7]: True

Out[9]: False

Out[11]: bool

Comparison operatorsComparison operators
Similar to other languages:

x != y # x is not equal to y
x > y # x is greater than y
x < y # x is less than y
x >= y # x is greater than or equal to y
x <= y # x is less than or equal to y

Logical operatorsLogical operators
1) and

In [14]: n = 6
n > 0 and n < 10

Out[14]: True

2) or

In [18]: n%2 == 0 or n%3 == 0

Out[18]: True

3) not negates a boolean expression

In [19]: not (n > 10)

Out[19]: True

Conditional executionConditional execution

Note the indentation.

Example:

if statement == True:
 do something

In [4]: x = 42
if x > 0:
 print('x is positive')

if x < 0:
 pass # do nothing

x is positive

Alternative executionAlternative execution
two possibilities
if followed by else

In [6]: x = 42
if x%2 == 0:
 print('x is even')

else:
 print('x is odd')

x is even

Chained conditionalsChained conditionals
more than two possibilities
start with if
continue with elif (not else if)

can end with else
conditions are checked in order
even if more than one condition is true, only the �rst rue branch executes

In [11]: x = -42
if x > 0:
 print('x is positive')

elif x == 0:
 print('x is zero')

else:
 print('x is negative')

x is negative

Nested conditionalsNested conditionals
combine conditionals
might become complicated to read

many tabs...

In [13]: x = -42
if x > 0:
 print('x is positive')

else:
 if x == 0:
 print('x is zero')
 else:
 print('x is negative')

x is negative

Nested conditionalsNested conditionals
use logical operators to simplify nested condtionals

In [15]: x = 42
if 10 < x:
 if x < 100:
 print('x is a positive double-digit number.')

In [16]: if 10 < x and x < 100:
 print('x is a positive double-digit number.')

x is a positive double-digit number.

x is a positive double-digit number.

RecursionRecursion

RecursionRecursion
A function that calls itself is recursive.
The process is called recursion.

Example: A function that prints a string n times.

In [18]: def print_string(s, n):
 if n <= 0:
 return
 print(s)
 print_string(s, n-1)

In [19]: word = 'test'
amount = 10
print_string(word, amount)

test
test
test
test
test
test
test
test
test
test

In�nite RecursionIn�nite Recursion
Not a good idea

Python will prevent you from having an in�nite recursion run forever

RuntimeError: Maximum recursion depth exceeded

Exercise 1: The �nal countdownExercise 1: The �nal countdown
Write a recursive programme that prints a count-down from . As soon as zero is reached,
the program should print Ka-Boom!.

Exercise 2:Exercise 2:
Write a programme that can compute factorials of a given integer using recursion:

IterationIteration

Until now: used recursion to perform repetition.

"Repeating identicial or similar tasks without making errors is
something that computers do well and people do poorly."

While statementsWhile statements

Execution Flow

1. Evaluate the condition (True or False)

2. If False: exit the while statement and continue with next statement

3. If True: execute the body and go back to step 1.

The body of the loop

Change the value of one or more variable
Eventually, the condition has to become False
Else: In�nite Loop

while condition == True:
 do something (body)

The iterative �nal countdownThe iterative �nal countdown

In [33]: def countdown(n):
 while n>0:
 print(n)
 n = n - 1
 print('Ka-Boom!')

In [35]: countdown(10)

10
9
8
7
6
5
4
3
2
1
Ka-Boom!

Exercise 3:Exercise 3:
Earlier, we wrote the recursive function print_string :

Rewrite the function using iteration instead of recursion.

def print_string(s, n):
 if n <= 0:
 return
 print(s)
 print_string(s, n-1)

For loops loops
Iterate over the items of any sequence

Strings
Lists
...

In [56]: for letter in 'python':
 print('Current letter: ', letter)

Current letter: p
Current letter: y
Current letter: t
Current letter: h
Current letter: o
Current letter: n

In [57]: fruits = ['banana', 'apple', 'mango']

for fruit in fruits:
 print('Current fruit: ', fruit)

Current fruit: banana
Current fruit: apple
Current fruit: mango

In [69]: # alternatively, as a while loop
index = 0
while index < len(fruits):
 fruit = fruits[index]
 print('Current fruit: ', fruit)
 index = index + 1

Current fruit: banana
Current fruit: apple
Current fruit: mango

Looping and coutingLooping and couting

In [62]: word = 'banana'
count = 0
for letter in word:
 if letter == 'a':
 count += 1

print(count)

3

Exercise 4Exercise 4
Use the code snipped above, and rewrite it as a function named count. The function should
accept the string, and the letter that is supposed to be counted.

I want to I want to break free! free!
break terminates the current loop

operation is resumed at the next statement

In [36]: for letter in 'Queen':
 if letter == 'e':
 break
 print('Current letter: ', letter)

Current letter: Q
Current letter: u

In [40]: number = 25
while number > 0:
 print('Current number:', number)
 number = number - 1
 if number == 15:
 break

Current number: 25
Current number: 24
Current number: 23
Current number: 22
Current number: 21
Current number: 20
Current number: 19
Current number: 18
Current number: 17
Current number: 16

You shall not You shall not pass

null operation: do nothing
useful as a placeholder when your code is still in development

In [44]: for letter in 'Gandalf':
 if letter == 'a':
 pass
 else:
 print('Current letter: ', letter)

Current letter: G
Current letter: n
Current letter: d
Current letter: l
Current letter: f

Continue

After continue, return to the beginning of the loop

Rejects all the remaining statements in the current iteration of the loop

In [70]: for letter in 'Gandalf':
 if letter == 'a':
 continue
 print('Current letter: ', letter)

Current letter: G
Current letter: n
Current letter: d
Current letter: l
Current letter: f

List comprehensionsList comprehensions
Short way to create lists. Instead of

we can simply write

squares = []
for i in range(10):
 squares.append(i**2)

squares = [i**2 for i in range(10)]

Exercise 5Exercise 5
Write a programme that counts the number of characters for the Hogwarts houses in the
following list of strings:

If the number of characters is even, the programme should print the name of the house.

strings = ['Gryffindor', 'Ravenclaw', 'Hufflepuff', 'Slytherin']

Final Exercise:Final Exercise:

Rewrite Cecilia's code in python3 and hope it doesn't become obsolete before you �nish
your thesis.

