PRINT: Python bootcamp 2020

Statements: loops and conditionals

Johanna Hartke (jhartke@eso.org)

I'm bored

Well, then, you should
do something

N

Nonglish.com

But I'm too hungry to do anything

But getting food would
give you something to do
Yeah, but I'm too lazy \
to get food f

=}

Well then there's no hope.

I'm trapped in an
infinite loop of lazy.

Try hitting CTRL+C

&]

Resources: "Think Python: How to think like a computer scientist" by Allen Downey

First and foremost:

Indentation is key!

Makes code more readable

In python: marks code blocks

Good text editors take care of this

Please, please, please do not mix spaces and tabs

In [6]:

The modulus operator %

e Works on integers
¢ Yields the remainder of division

Example

quotient = 5//3 # true division
remainder = 5%3
print('Quotient: ', quotient)
print('Remainder: ', remainder)

Quotient: 1
Remainder: 2

In [7]:

Oout[7]:

In [9]:

Out[9]:

In [11]:

out[11]:

Boolean expressions

e Expressions that are either True or False

e True and False are not strings, they have type bool
® NoneisevaluatedasFalse

¢ Nonzero numbers are evaluated as True

Examples:
10 == 10
True

10 == 20
False

type (False)
bool

Comparison operators

Similar to other languages:

P T B

V. AV —

A

y
y

y

LS

R Y N NI NN

MoX X M X

is
is
is
is
is

not equal to
greater than
less than y
greater than
less than or

Yy
y

or equal to y
equal to y

Logical operators

1) and

In [14]: = 6
> 0 and n < 10

Out[14]1: True

2) or

In [18]: n%2 == 0 or n%3 == 0

Oout[18]: True

3) not negates a boolean expression

In [19]: not (n > 10)

Out[19]: True

Conditional execution

if statement == True:
do something

Note the indentation.

Example:

In [4]: x = 42
if x > 0:
print('x is positive')
if x < 0:
pass # do nothing

X is positive

Alternative execution

e two possibilities
e if followedbyelse

In [6]: x = 42

if x%2 == 0:
print('x is even')
else:

print('x is odd')

X is even

Chained conditionals

¢ more than two possibilities
e startwithif

e continuewithelif (notelse if)
e canendwithelse

e conditions are checked in order
e even if more than one condition is true, only the first rue branch executes

In [11]: x = -42

if x > 0:

print('x is positive')
elif x == 0:

print('x is zero')
else:

print('x is negative')

X is negative

Nested conditionals

e combine conditionals
e might become complicated to read
= many tabs...

In [13]: x = -42

if x > 0:
print('x is positive')
else:
if x == 0:
print('x is zero')
else:

print('x is negative')

X is negative

Nested conditionals

e use logical operators to simplify nested condtionals

In [15]:

In [16]:

x = 42
if 10 < x:
if x < 100:

print('x is a positive double-digit number.

X is a positive double-digit number.

if 10 < x and x < 100:

print('x is a positive double-digit number.')

X is a positive double-digit number.

Recursion

PROBLEMS

Recursion time.

Recursion

e Afunction that calls itself is recursive.
e The process is called recursion.

Example: A function that prints a string n times.

In [18]: def print string(s, n):
if n <= 0:
return
print(s)
print string(s, n-1)

In [19]: word = 'test'
amount = 10
print string(word, amount)

test
test
test
test
test
test
test
test
test
test

Infinite Recursion

e Notagoodidea
¢ Python will prevent you from having an infinite recursion run forever

RuntimeError: Maximum recursion depth exceeded

Exercise 1: The final countdown

Write arecursive programme that prints a count-down from n. As soon as zero is reached,
the program should print Ka-Boom!.

Exercise 2:

Write a programme that can compute factorials of a given integer using recursion:

nl=n-mn-1)

lteration

"Repeating identicial or similar tasks without making errors is
something that computers do well and people do poorly."

Until now: used recursion to perform repetition.

While statements

while condition == True:
do something (body)

Execution Flow

1. Evaluate the condition (True or False)
2.If False: exit the while statement and continue with next statement

3. If True: execute the body and go back to step 1.

The body of the loop

e Change the value of one or more variable
e Eventually, the condition has to become False

¢ Else: Infinite Loop

The iterative final countdown

In [33]: def countdown(n):
while n>0:
print(n)
n=n-1
print('Ka-Boom! ')

In [35]: countdown(10)

P NWS OUToOYJ 00 VR
o

=~
i
o
(0]
(@]
5

Exercise 3:

Earlier, we wrote the recursive function print string:

def print string(s, n):
if n <= 0:
return
print(s)
print string(s, n-1)

Rewrite the function using iteration instead of recursion.

For loops
Iterate over the items of any sequence
e Strings

e Lists

In [56]:

for letter in

Current
Current
Current
Current
Current
Current

letter:
letter:
letter:
letter:
letter:
letter:

'python':
print('Current letter:

p
y
t
h
o
n

4

letter)

In [57]: fruits = ['banana', 'apple', 'mango’]

for fruit in fruits:
print('Current fruit: ', fruit)

Current fruit: banana
Current fruit: apple
Current fruit: mango

In [69]:

alternatively, as a while loop

index = 0

while index < len(fruits):
fruit = fruits[index]
print('Current fruit: ', fruit)
index = index + 1

Current fruit: banana
Current fruit: apple
Current fruit: mango

In [62]:

Looping and couting

word = 'banana'
count = 0
for letter in word:
if letter == 'a':
count +=
print (count)

3

Exercise 4

Use the code snipped above, and rewrite it as a function named count. The function should
accept the string, and the letter that is supposed to be counted.

| want to break free!

* break terminates the current loop
e operation is resumed at the next statement

In [36]: for letter in 'Queen':
if letter == 'e':
break
print('Current letter: ', letter)

Current letter: O
Current letter: u

In [40]: number = 25
while number > 0:
print('Current number:', number)

number = number - 1
if number == 15:
break

Current number: 25
Current number: 24
Current number: 23
Current number: 22
Current number: 21
Current number: 20
Current number: 19
Current number: 18
Current number: 17
Current number: 16

You shall not pass

SHALLNOT -
PASS!

¢ null operation: do nothing
e useful as a placeholder when your code is still in development

Y0

meamagenerator.not

In [44]: for letter in 'Gandalf':
if letter == 'a':
pass
else:
print('Current letter: ', letter)

Current letter: G
Current letter: n
Current letter: d
Current letter: 1
Current letter: £

Continue

e After continue, returnto the beginning of the loop
¢ Rejects all the remaining statements in the current iteration of the loop

In [70]:

for letter in

if letter ==

print('Current letter:

Current
Current
Current
Current
Current

continue

letter:
letter:
letter:
letter:
letter:

G
n
d
1
f

a

'"Gandalf':

14

letter)

List comprehensions

Short way to create lists. Instead of

squares = []
for i in range(10):
squares.append(i*#*2)

we can simply write

squares = [1**2 for i in range(10)]

Exercise b

Write a programme that counts the number of characters for the Hogwarts houses in the
following list of strings:

strings = ['Gryffindor', 'Ravenclaw', 'Hufflepuff', 'Slytherin']

If the number of characters is even, the programme should print the name of the house.

Final Exercise:

% phd.m WONT (T

. KEEP LOOPING
author: Cecilia FOREVER?

date: 090805

load THESIS_TOPIC

while [(funding==true)
data = run_experiment ([THESIS_TOPIC] ;
GOOD_ENOUGH = query (advisor);

o
M)

&) L0

if (cdata > GOOD_ENOUGH)
graduate (] ;
break

else
THESIS_TOPIC = newl();
vears_in_gradschool += 1;

end

end

JORGE CHAM

Rewrite Cecilia's code in python3 and hope it doesn't become obsolete before you finish
your thesis.

