All-sky i1mages manipulation: star
registration, photometry and archive

query

Context:
APICAM is an all-sky camera in Paranal, raw fits images are saved in the ESO archive and
have the potential to help the weather officer by providing a map of the sky transparency.

Goals of the project:

The goal is to make the first steps in converting a raw APICAM image in a transparency
map. This requires, reading a fits file, detecting automatically stars using some rejection
criterias, querying Simbad to get a list of the brightest stars visible at the date of observation,
and doing aperture photometry,

Steps:
1.
Download and read APICAM images, use a mask to select a region of
interest.
2. Detect stars in this region, reject unsuitable objects, record the position and

flux.

3. Given a date and time, locate all stars brighter than magnitude V suitable for
photometry.

4. If time allows, associate the stars detected on the image to the brightest stars
detected from the catalogue.

5. Iftime allows, query the positions of the bright planets in our solar system.

ES+
"0
+

python’

ESOpy 3.0
15-16-17 April 2019
ESO Vitacura

PSF of photometric images

Project coordinated by Alessandro Razza

Abstract

Python packages for astronomers are rapidly evolving to adjust the community ne-
cessity to quickly analyze and plot astronomical data within the same framework.
More than packages of a programming language, they work as authentic astronomy
software providing for instance tools to detect astronomical sources and perform
aperture or PSF photometry on images, as in the case of photutils. By imple-
menting some features of photutils, astropy and possibly astroquery packages,
we write a script capable to read fits files, detect stars on the images by using a
model PSF and build an effective PSF (ePSF) out of the selected stars. Some op-
tional exercise is also proposed to perform aperture photometry, to print out the list
of sources with their parameters in a table and to use the stellar centroid positions,
refitted with the PSF photometry routine, to evaluate the images astrometric solu-
tion. With a basic knowledge of python syntax and object-oriented programming
(object instances, classes attributes and methods), working on this project simply
results in finding and writing the series of instructions to perform the requested
tasks.

Required background and skills

Being familiar with FITS file headers and the World Coordinate System (WCS) is
required at a basic extent. Having worked with photometric data is not necessary,
although it is required to have a basic knowledge of aperture and PSF photome-
try. No particular programming skills are required. However, understanding from
ESOpy 3.0 lectures how a python object/class is instantiated and how arguments
are passed to a function/class method can be beneficial.

Python packages
e python 3.6+ and other packages used for ESOpy 3.0 (e.g. numpy, matplotlib)

e photutils 0.6
Install with
conda install -c astropy photutils
from within your environment.

e astropy 3.1
Install with
conda install -c anaconda astropy
from within your environment.

e astroquery 0.3 (not strictly necessary if you do not want to query GAIA
stars for the astrometry or to match the stars)
Install with
conda install -c astropy astroquery
from within your environment.

Main project tasks

A list of the main task with a suggested sub-package to use is presented (tutoring
is provided to avoid getting stuck)

1. Read a given set of photometric images (FITS files) (astropy.io).
2. Find stars in the images with a proper find-star algorithm (photutils.detection).

3. Implement a way to cut out non-stellar object (a first order solution could be
matching the coordinates with GAIA stars with astropy.coordinates and
astroquery.vizier)

4. build an effective PSF (ePSF) out of the selected stars following (look here to
avoid wasting a month doing it!)

Optional tasks

Although recommended to complete all of the proposed optional tasks, you can pick
up only one or more from the following list:

5. Compute the aperture photometry (few passages more) and PSF photometry
(it is an automatic outcome of the process for finding the ePSF) of the list of
stars

6. Print on browser/save in a text file the list of stars with their parameters (pixel
positions, coordinates, aperture photometry, PSF photometry)

7. Save the FWHM from the ePSF in the image header

8. Evaluate the WCS solution by comparing the PSF centroid positions of the
stars (it is an automatic outcome of the process for finding the ePSF) with
GAIA catalog

https://photutils.readthedocs.io/en/stable/
http://docs.astropy.org/en/stable/
https://astroquery.readthedocs.io/en/latest/
https://photutils.readthedocs.io/en/stable/epsf.html

ESOpy3.0 +
15-16-17 April 2019 +ES+

Afternoon Project:

O
+

Simple spectral stacking
R. Thomas

Required Packages: argparse, numpy, catscii
Aim:
This projects aims at creating a code that stack (average) spectra of galaxies

together.

Material provided:

-We provide for this project 400 (public :)) spectra of galaxies at 0.8<z>1.0 in ascii

format.

Final product:

The goal is to make a software (not a module).

-We will create a command line interface [CLI] that takes 2 mandatory argument:
- The list of spectrum-redshift. Other optional arguments are
- A place where to normalize the spectra

Few optional arguments can also be included such as the binning of the stacked

spectrum, the name of the final spectrum, etc...this is up to you.

-Once you design the CLI, you must work on each individual spectrum from the
list: de-redshift them and normalize them. You must save them all together and

then interpolate them on a common wavelength grid.

-Then you will have to combined them. The way to combine them is up to you.
You might want to just take the average of all the spectra or you can also use a

sigma-clipping algorithm before taking the mean..
-Finally, you will save the spectrum in a text file with

-lambda, flux, standard deviation-

Example of CLI:

usage: specstack [-h] [-s S] [-p] [-f F] speclist normlimits bin

specstack V19.4.0, R. Thomas, 2018, ESO, This program comes with ABSOLUTELY NO
WARRANTY; and is distributed under the GPLv3.0 Licence terms.See the version

of this Licence distributed along this code for details.

positional arguments:
speclist File with coll = spectra names, col2 = redshift
normlimits 11 and 12 in angstrom where the spectra will be normalised

bin Binning of the stacked spectrum

optional arguments:
-h, --help show this help message and exit
-s S Sigma we use for the clipping, default=3
-p If plot at the end
-fF Name of the final file

Celestial object visibility plots

Elyar Sedaghati
Level: Beginner — Intermediate
Package requirement: numpy, matplotlib, astropy

January 7, 2018

In this exercise we will write a simple code for coordinate transformations and the creation of visibility
curves. It is planned to demonstrate the capabilities of the astropy.coordinates package. For more
convenient and/or complex observation planning, you should consider the astroplan package.

Here are some hints that should help with designing the code. Please click on the coloured links for
the documentation of that specific class/package.

Import the basic necessary packages (numpy, matplotlib)
Import packages for finding and transforming coordinates (look into the astropy package)

The variables should ideally be soft-coded, where the user is asked to input the target name, the
date of the observations and the observatory name.

Provide the user with a list of available observatories to choose from in
astropy.coordinates.EarthLocation

Get the coordinates of the the target provided by the user
(astropy.coordinates.SkyCoord)

Get the coordinates of the the telescope provided by the user
(astropy.coordinates.EarthLocation)

Calculate alt, az coordinates of the target for the given observatory
(astropy.coordinates.AltAz & the transform to method in the SkyCoord class)

Convert alt, az to airmass and plot it as a function of time
(secz method in the AltAz class)

Calculate alt, az values for both the sun and the moon during the night of the observations
(astropy.coordinates.get_sun and astropy.coordinates.get moon)

Remember to recalculate alt, az coordinates of the target for these new time stamps.

Make the final visibility plot with matplotlib, which includes the altitude of the target, the
moon and the sun, indicates twilight as gray-shaded and dark time as black-shaded. Optionally
you can include the azimuth variations of the target as a colorbar. For a nicer-looking plot,
I recommend styling the matplotlib graphs with the astropy mpl_style method from the
astropy.visualization package.

http://docs.astropy.org/en/stable/coordinates/index.html#module-astropy.coordinates
https://astroplan.readthedocs.org/
http://docs.astropy.org/en/stable/
http://docs.astropy.org/en/stable/api/astropy.coordinates.EarthLocation.html
http://docs.astropy.org/en/stable/api/astropy.coordinates.SkyCoord.html
http://docs.astropy.org/en/stable/api/astropy.coordinates.EarthLocation.html
http://docs.astropy.org/en/stable/api/astropy.coordinates.AltAz.html
http://docs.astropy.org/en/stable/api/astropy.coordinates.get_sun.html
http://docs.astropy.org/en/stable/api/astropy.coordinates.get_moon.html
http://docs.astropy.org/en/stable/visualization/

Title: Tapping into the ADS with Python

Concepts involved: manipulation of lists, 2D plots (line, scatter,
histogram), basic data fitting

Abstract:

The astroquery module allows to easily query the ADS with Python.
Here, I propose to use this module to assemble a simple script that
computes one's publication statistics automatically. The tasks
involved (list manipulation, basic plotting) are ideal for beginners
and intermediate users to develop their programming skills. Advanced
users may use the datasets involved to explore a range of data
manipulation and fitting routines. The goal is for every participant
to go home with a fully working script able to automatically update
their publication statistics.

Packages required:
matplotlib, astroquery, numpy

Packages possibly useful:
dateutil, datetime, scipy, astropy, statsmodels

ESOpy3.0 +
15-16-17 April 2019 +ES+

Afternoon Project:

O
+

catmatch
R. Thomas

Required Packages: numpy, catscii, tqdm (optional)

Aim:

This project aims at matching catalogs by column-row entries.

Material provided:

Two catalog with a common column

Final product:

The goal is to make a software (not a module).
-We will create a command line interface [CLI, see an example below] that takes 4
mandatory argument:

- The two catalog two match

- The name of the column to be matched.
- The name of the final file

-Once you design the CLI, you must must take the catalogs and read them.

-Then look for the column you want to match and start to loop over the first
catalog rows.

-For each row you will take the column to match and look into the other catalog to
find a match

-Once it is done for each row, you will have to write down the matched combined
catalog (see below) with the proper header. If header columns are the same you

should also take this into account.

- You must also think about what happens when in the second catalog, to rows
have the same ID for the matching column, or when there is nothing to match
with.

---In brief, you must go from two catalogs like these ones:
Cat1:
ID Col1 Col2 Col3
ID#1 X1 Y1 Z1
ID#2 X2 Y3 Z2
ID#3 X3 Y3 Z3
ID#4 X4 Y4 Z4

ID#5 X5 Y5 Z5
And Cat2:

ID Col1 ColZ ColX
ID#1 A1 B1 C1
ID#2 A2 B3 C2
ID#3 A3 B3 C3
ID#4 A4 B4 C4

ID#5 A5 BS C5

and end up with:

ID Col1 Col2 Col3 ... ID Col1_1 ColB ColC
ID#1 X1 Y1 Z1 ID#1 A1 B2 C2
ID#2 X2 Y3 Z2 v ID#2 A2 B2 C2
ID#3 X3 Y3 Z3 v ID#3 A3 B3 C3
ID#4 X4 Y4 Z4 - ID#4 A4 B4 C4
ID#5 X5 Y5 Z5 . ID#5 A5 BS C5

Example of CLI:

usage: catmatch [-h] filel file2 column outputfile

specstack V1.2, R. Thomas, 2018, ESO, This program comes with ABSOLUTELY NO
WARRANTY; and is distributed under the GPLv3.0 Licence terms.See the version
of this Licence distributed along this code for details.

positional arguments:

filel Your first catalog of data to match this is mandatory
(positional argument)

file2 Your second catalog of data to match this is mandatory
(positional argument)

column The common column to match. The word you enter here must be in
the header of the column you want to match and must be in the
two catalogs

outputfile The name of the output file that will be created (without

spaces)

optional arguments:

-h, --help show this help message and exit

ESOpy3.0 +
15-16-17 April 2019 +ES+

Afternoon Project:

O
+

dfitspy
R. Thomas

Required Packages: fitsio, numpy [& python-magic]

Aim:
This project aims at porting the dfits|fitsort algorithms to python

Material provided:
-5 test FITS files.
-FITS files search function (digging into the fitsio C-wrapper)

-File search function

Final product:

The goal is to make a software (not a module).
-We will create a command line interface [CLI, see an example below] that takes 2
mandatory argument:
- The list of files
- The list of keywords
Few optional arguments can also be included such as grepping value, keyword

listing, saving the results, etc.... This is up to you!

-Once you design the CLI, you must work on each individual file and look for the
keywords you are asking to display. When you find them you must save the file, the
keyword, and the corresponding value.

-Then you must display them in a dfits fashion (see below)

Example of CLI:

usage: dfitspy [-h] [-file [FILE [FILE ...]]] [-key KEY] [--list]
[--grep GREP] [--save] [--test] [--version] [--docs]

dfitspy: dfits|fitsort in python, version 19.3.4, Licence: GPL

optional arguments:

-h, --help show this help message and exit

--list List all keywords in a given file (if a list of file
is given the first one is used)

--grep GREP Restrain the files to the one with a given value of a
given parameter. It can be used multiple times with
different values

--save Save the list of files into an ascii file

--test Start the testing of the program

--version Display the version of the program

--docs Diplay the online or local documentation program

Mandatory arguments if you want to dfitsort your files:
-file [FILE [FILE ...]]
a file, a list of file separated by coma, *.fits is
accepted, * as well, test* as well, testdir/test* as
well
-key KEY Header keyword or list of header keywords (separated

by coma)

Example of output:

[DFITSPY INFO]> 34 fits files will be considered

filename

R R R KRR BRRKERRRHKERRRRRERRRBERRREBRRR R R R

[DFITSPY INFO]> 34 files

.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:53:
.XSH00.2099-14-59T09:59:
.XSH00.2099-14-59T09:59:
.XSH00.2099-14-59T09:59:
.XSH00.2099-14-59T09:59:
.XSH00.2099-14-59T09:59:
.XSH00.2099-14-59T09:59:
.XSH00.2099-14-59T09:59:

.577_tpl-A01_0000.
.577 tpl-A01_0001.
.577 tpl-A01_0002.
.577 tpl-A02_0000.
.577 tpl-A02_0001.
.577 tpl-A02_0002.
.577 tpl-A03_0000.
.577 tpl-A03 0001.
.577 tpl-A03 0002.
.797 tpl-A01 _0000.
.797 tpl-A01_0001.
.797 tpl-A01_0002.
.797 tpl-A02_0000.
.797 tpl-A02_0001.
.797 tpl-A02_0002.
.797 tpl-A03_0000.
.797 tpl-A03_0001.
.797 tpl-A03 0002.
.055 tpl-A01 0000.
.055 tpl-A01 0001.
.055 tpl-A01 0002.
.055 tpl-A02_0000.
.055_tpl-A02 0001.
.055_tpl-A02 0002.
.055 tpl-A03 0000.
.055 tpl-A03 0001.
.055 tpl-A03_0002.
.509_tpl-A01_0000.
.509 tpl-A01 _0001.
.509 tpl-A01 0002.
.509 tpl-A01 0003.
.509 tpl-A01 0004.
.509 tpl-A01 0005.
.509 tpl-A01 0006.

used in output

OBJECT
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
LAMP, AFC
STD, TELLURIC
STD, TELLURIC
STD, TELLURIC
STD, TELLURIC
STD, TELLURIC
STD, TELLURIC
HD 205828

ESO OBS ID
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011
2025011

